
Time-Based Proxy Re-encryption Scheme for Secure

Data Sharing in a Cloud Environment

Qin Liua,b, Guojun Wanga,∗, Jie Wub

aSchool of Information Science and Engineering
Central South University

Changsha, Hunan Province, P. R. China, 410083
bDepartment of Computer and Information Sciences

Temple University
Philadelphia, PA 19122, USA

Abstract

A fundamental approach for secure data sharing in a cloud environment is
to let the data owner encrypt data before outsouring. To simultaneously
achieve fine-grained access control on encrypted data and scalable user revo-
cation, existing work combines attribute-based encryption (ABE) and proxy
re-encryption (PRE) to delegate the cloud service provider (CSP) to execute
re-encryption. However, the data owner should be online in order to send
the PRE keys to the CSP in a timely fashion, to prevent the revoked user
from accessing the future data. The delay of issuing the PRE keys may
cause potential security risks. In this paper, we propose a time-based proxy
re-encryption (TimePRE) scheme to allow a user’s access right to expire
automatically after a predetermined period of time. In this case, the data
owner can be offline in the process of user revocations. The basic idea is
to incorporate the concept of time into the combination of ABE and PRE.
Specifically, each data is associated with an attribute-based access structure
and an access time, and each user is identified by a set of attributes and a set
of eligible time periods which denote the period of validity of the user’s access
right. Then, the data owner and the CSP are required to share a root secret
key in advance, with which CSP can automatically update the access time
of the data with the time that it receives a data access request. Therefore,

∗Corresponding Author:
Email address: csgjwang@mail.csu.edu.cn (Guojun Wang)
URL: http://trust.csu.edu.cn/faculty/~csgjwang (Guojun Wang)

Preprint submitted to Elsevier Information Sciences September 18, 2012



given the re-encrypted ciphertext, only the users whose attributes satisfy the
access structure and whose access rights are effective in the access time can
recover corresponding data.

Keywords: Cloud computing; time; proxy re-encryption; attribute-based
encryption

1. Introduction

Cloud computing has increasingly become a commercial trend due to its
desirable properties, such as scalability, elasticity, fault-tolerance, and pay-
per-use [1]. Small and medium-sized organizations, in particular, can achieve
great flexibility at a low price by outsourcing their data and query services
to the cloud. The cloud infrastructures are more powerful and reliable than
personal computing devices, but they are still susceptible to internal threats
(e.g., via virtual machines) and external threats (e.g., via system vulnerabili-
ties) that may leak user sensitive data [7, 25]. Therefore, many organizations
still hesitate to adopt cloud services [24].

To prevent unsolicited disclosure of sensitive information, data owners
may have to encrypt their data before outsourcing [6, 15, 18]. In this way,
only the authorized users with the decryption keys can recover the data,
and other unsolicited accessors without the decryption keys, e.g., the cloud
service provider (CSP), cannot execute decryption, even if they successfully
obtain the ciphertexts stored in the cloud. However, new problems, such as
fine-grained access control on the encrypted data and scalable user revocation,
emerge for this solution1.

To illustrate, let us consider the following application scenario, as shown
in Fig. 1. Suppose that University A outsources the electronic library database
to a cloud for easy access by its staff and students. For the protection of copy-
right, each piece of data is encrypted before outsourcing. In this application,
the staff and students are users, and University A is the data owner who will
specify the access structure for each data, and will distribute decryption keys
to users. Once joining University A, each user will first be assigned an access
right with certain validity for accessing the outsourced database. Once the

1There are certainly more than two problems existing in such an environment, e.g.,
impersonation of user identity and compromising data integrity. We do not solve all the
potential security threats, but only address those directly related to our work.

2



Figure 1: Company A outsources an encrypted database to the cloud.

period of validity passes, this user should request an extension for his access
right from University A.

In Fig. 1, data F ’s access structure stipulates that only the staff or the
students in computer information science (CIS) department have the right
to access it. In this access structure, the data owner does not know the
exact identities of the authorized users, but rather he only has a way to
describe them using certain descriptive attributes, such as Staff, Student,
and CIS. Therefore, the adopted encryption system should have the ability
to efficiently implement a fine-grained access control over attributes.

Ciphertex-policy attribute-based encryption (CP-ABE) [3, 19] as a promis-
ing branch of ABE [23] has such a property. In CP-ABE, users are identified
by a set of attributes rather than an exact identity. For each eligible at-
tribute, the user will be issued a user attribute secret key (UAK). Each data
is encrypted with an attribute-based access structure, such that only the users
whose attributes satisfy the access structure can decrypt the ciphertext us-
ing their UAKs. For example, for data which is encrypted with the access
structure {(Student ∧ CIS) ∨ Staff}, either users with attributes Student
and CIS, or users with attribute Staff, can recover data.

Furthermore, from the above application scenario, we observe that each
user’s access right is only effective in a predetermined period of time. For
example, the effective time of Alice’s access right is from 01/01/2012 to
12/31/2012 and she can access the database in year 2012, but the effective
time of Bob’s access right is from 05/01/2012 to 06/30/2012 and thus he
cannot access the database after June.

A näıve way is to let University A expose the effective time of each user’s
access right to the CSP, with which the CSP can execute user revocation
correctly. The main drawback of this approach is that the CSP will know the
effective time of each user’s access right, which may cause potential leakage of

3



sensitive information. For example, the CSP may guess the user whose access
right has longer effective time is in a more important position than that with
shorter-term access right. Due to the same reason, the ticket-based access
control [21], which requires the users to expose their tickets to the CSP, may
also expose the effective time of each ticket.

Another approach is to require the data owner to personally execute user
revocation. A revoked user still retains the keys issued earlier, and he can
recover data if he obtains corresponding ciphertexts. To prevent the revoked
user from accessing further data, the data owner needs to immediately re-
encrypt the ciphertexts. Furthermore, the data owner needs to distribute
new keys to the remaining authorized users for them to access the database.
When there are frequent user revocations, this solution will result in a heavy
workload on the data owners.

A better solution should take full advantage of abundant resources in a
cloud by delegating the CSP to execute computationally intensive tasks in
user revocations, while leaking the least information to the CSP. Existing
work [29, 28] proposed the idea of applying the combination of proxy re-
encryption (PRE) [4, 13] and ABE to a cloud environment. This approach
requires that once a user is revoked from a system, the data owner should
send the PRE keys to the CSP, with which the CSP can be delegated to
re-encrypt corresponding ciphertexts. The original schemes in [29, 28] also
allow the CSP to be delegated to distribute the update keys to remaining
authorized users for them to generate new UAKs. However, the CSP should
first know the identities of these authorized users, and it will finally know the
effective time of each user. Therefore, to avoid leaking additional information,
the data owner should distribute the update keys on his own. Due to the
security of ABE and PRE, the CSP cannot know neither underlying data nor
UAKs. The main problem of this approach is that the data owner should
be online in order to send the PRE keys to the CSP in a timely fashion to
prevent the revoked users from accessing future data. The delay of issuing
PRE keys will cause potential security risks.

In this paper, we propose a time-based proxy re-encryption (TimePRE)
scheme, by incorporating the concept of time into a combination of CP-ABE
and PRE. Our scheme allows a user’s access right to automatically expire
after a predetermined period of time. Therefore, our scheme can avoid the
security risks caused by the delay of issuing PRE keys. The data owner, who
can be offline in the process of user revocations, has much less workload.

Specifically, we associate each data with an attribute-based access struc-

4



ture and an access time. We identify each user by a set of attributes and
a set of eligible time periods which denotes how long the user is eligible for
these attributes, i.e., the period of validity of his access right. Then, we
construct a time tree for the actual time, and require the data owner and the
CSP to share a root secret key in advance, with which CSP can automati-
cally calculate appropriate PRE keys, and use these PRE keys to re-encrypt
the ciphertext, i.e., update the access time of the data with the time that it
receives a data access request. Given the re-encrypted ciphertext, only the
users whose attributes satisfy the access structure and whose access rights
are effective in the access time can recover corresponding data.

The security of the TimePRE scheme can be derived from CP-ABE and
PRE. CP-ABE ensures that ciphertexts are semantically secure [5], and PRE
ensures that the CSP re-encrypts ciphertexts without knowing the underlying
data and UAKs. Note that our security model does not assume that there is
no trust relationship between the CSP and the data owner. Actually, as in
existing work [29, 28], we assume that the CSP will correctly carry out our
scheme to ensure system-wide security. Our scheme can be considered as a
first step for secure data sharing in a cloud environment.

Our contributions are threefold:

1. It is secure. The TimePRE scheme enables the CSP to automatically
re-encrypt data without receiving any PRE keys from the data owner.
Our scheme can avoid potential security risks that are raised by the
delay of issuing the PRE keys.

2. It is practical. We extend a CP-ABE system by applying the PRE
technique to reduce the workload on the data owner. Our scheme
is more applicable to the environment where there are frequent user
revocations and the data owners cannot be often online.

3. It is efficient. We incorporate the concept of time into an efficient
CP-ABE system [28, 26], so that a user can rapidly recover data by
executing a constant number of bilinear maps [5].

This paper is structured as follows: First, we review related work in
Section 2. Then, we provide models and assumptions in Section 3, and
introduce technical preliminaries in Section 4. We outline the TimePRE
scheme in Section 5 and provide a construction in Section 6. Then, we
analyze the correctness, performance, and security of the TimePRE scheme
in Section 7, and provide an additional discussion in Section 8. Finally, we
conclude this paper and provide our future work in Section 9.

5



2. Related Work

In the cloud computing model, the data owners have to entrust sensitive
data to a remote cloud, which is maintained by an external party, i.e., the
cloud service provider (CSP). Rather than fully trusting the CSP, existing
research [6, 15, 18] proposed to only outsource encrypted data to the cloud.
Our work is on fine-grained access control on the encrypted data and scalable
user revocation. We introduce the related work as follows:

2.1. Fine-Grained Access Control on Encrypted Data

To protect data security from an untrusted server, the work in refer-
ence [14] adopts traditional symmetric key cryptographic system to encrypt
data. Before outsourcing, the data owner will first classify data with similar
access control lists (ACLs) into a file-group, and then encrypt each file-group
with a symmetric key. The symmetric key will be distributed to the users
in the ACL, so that only the users in the ACL can access this group of files.
The main drawback of this approach is that the key size managed by the
data owner grows linearly with the number of file-groups.

Another approach is proposed by [11], which is based on the combination
of traditional symmetric key and public key cryptographic systems. The data
owner first specifies an ACL for a data, and then encrypts the data with a
symmetric key, which is encrypted with the public keys of users in the ACL.
Therefore, only the users in the ACL can use their secret keys to recover the
symmetric key, and then use the symmetric key to recover the data. The
main drawback of this approach is that the costs for encrypting a data will
grow linearly with the number of users in the ACL.

Therefore, an ideal approach is to encrypt each data once, and distribute
appropriate keys to users once, so that each user can only decrypt his au-
thorized data. Attribute-based encryption (ABE) [23], which has developed
to two branches, key-policy ABE (KP-ABE) [12] and ciphertext-policy ABE
(CP-ABE) [3, 19], is a promising cryptographic technique having such a
property. This flexibility makes ABE an attractive choice when selecting an
encryption scheme for cloud computing.

To guarantee security and privacy of medical data stored in the cloud,
the work in reference [20] constructed a secure and privacy-preserving elec-
tronic health record (EHR) system based on ABE. Facing new challenges in
cloud data centers, the work in reference [16] proposed an accountable CP-
ABE scheme, which allows tracing the identities of a misbehaving users who

6



leaked their secret keys to others. In our previous work, an efficient CP-ABE
system, termed hierarchical attribute-based encryption (HABE) [26], is pro-
posed for secure data sharing in cloud environment. By uniquely combining
hierarchical identity-based encryption (HIBE) [10] and CP-ABE, HABE re-
quires to execute only a constant number of bilinear maps to recover data.
As an improvement, we proposed a conjunctive fuzzy and precise identity-
based encryption (FPIBE) scheme [27] which supports both identity-based
and attribute-based access structures for data stored in the cloud.

2.2. User Revocation

User revocation is a well studied, but non-trivial task. The key problem
is that the revoked users still retain the keys issued earlier, and thus can still
decrypt ciphertexts. Therefore, whenever a user is revoked, the re-keying and
re-encryption operations need to be executed by the data owner to prevent
the revoked user from accessing the future data. For example, when ABE is
adopted to encrypt data, the work in reference [22] proposed to require the
data owner to periodically re-encrypt the data, and re-distribute new keys to
authorized users. This approach is very inefficient due to the heavy workload
introduced on the data owner.

A better solution is to let the data owner delegate a third party to execute
some computational intensive tasks, e.g, re-encryption, while leaking the
least information. Proxy re-encryption [4, 13] is a good choice, where a
semi-trusted proxy is able to convert a ciphertext that can be decrypted
by Alice into another ciphertext that can be decrypted by Bob, without
knowing the underlying data and user secret keys. For example, the work in
reference [29] is the first to combine KP-ABE and PRE to delegate most of
the computation tasks involved in user revocation to the CSP. Our previous
work [28] is the first to combine PRE and a CP-ABE system (HABE) to
achieve a scalable revocation mechanism in cloud computing. The work
in reference [30] that supports attribute revocation may be applicable to a
cloud environment. This approach requires that once a user is revoked from
a system, the data owner should send PRE keys to the CSP, with which
the CSP can be delegated to execute re-encryption. The main problem of
this approach is that the data owner should be online in order to send the
PRE keys to the CSP in a timely fashion, to prevent the revoked user from
accessing the data. The delay of issuing PRE keys may cause potential
security risks.

7



In this paper, we extend an efficient CP-ABE system (HABE [28, 26]) by
incorporating the concept of time to perform automatic proxy re-encryption.
The main difference from prior work is that we enable each user’s access right
to be effective in a pre-determined time, and enable the CSP to re-encrypt
ciphertexts automatically based on its own time. Thus, the data owner can
be offline in the process of user revocations.

3. Models, Assumptions, and Design Goals

In this section, we will describe the system model and security model in
our scheme, and provide our design goals and related assumptions.

3.1. System Model

We consider a cloud computing environment consisting of a cloud service
provider (CSP), a data owner, and many users. The CSP maintains cloud
infrastructures, which pool the bandwidth, storage space, and CPU power
of many cloud servers to provide 24/7 services. We assume that the cloud
infrastructures are more reliable and powerful than personal computers. In
our system, the CSP mainly provides two services: data storage and re-
encryption. After obtaining the encrypted data from the data owner, the
CSP will store the data on several cloud servers, which can be chosen by the
consistent hash function [8], where the input of the consistent hash function
is the key of the data, and the outputs of the consistent hash function are
the IDs of the servers that store the data. On receiving a data access request
from a user, the CSP will re-encrypt the ciphertext based on its own time,
and return the re-encrypted ciphertext.

The data owner outsources a set of data to the cloud. Each piece of data is
encrypted before outsourcing. The data owner is responsible for determining
the access structure for each data, and distributing user attribute secret keys
(UAKs) corresponding to user attributes to each user. When a user wishes
to access data, he will first request appropriate keys from the data owner,
and then request the CSP to download the ciphertext. If his access right is
effective when he requests the data, he can successfully execute decryption.

Since the TimePRE scheme is based on time, a slight time difference may
impact the correctness of our scheme. The network time protocol (NTP),
which can be used to achieve time synchronization in a cloud environment,
still incurs time drifts of several seconds. Our work focuses on the crypto-
graphic design and construction. Therefore, in our system model, we simply

8



assume that there is a global time to ensure time consistency among all en-
tities. Actually, a global time is hard to achieve in a cloud environment.
We may use the techniques proposed in our previous work [17] to ensure the
TimePRE scheme works well in a no-global-time cloud environment. We also
indicate that our scheme is more suitable for the cloud applications where
a coarse-grained time accuracy is satisfactory, e.g., a day or an hour. For
the applications that require a fine-grained time accuracy, e.g., a second or
microsecond, the cost to ensure correctness will be excessive, even if we apply
the techniques in [17] to the TimePRE scheme.

3.2. Security Model

There are two kinds of adversaries in the system: honest but curious CSP,
and malicious users. The honest but curious CSP will correctly execute the
protocol defined previously, but may try to gain some additional information
about the stored data. The malicious user wants to access the data, to which
he is not eligible to access. The communication channels are assumed to be
secured under existing security protocols such as SSL to protect data security
during information transferring.

Note that both an honest but curious CSP, and malicious users, can
exist together. We assume that the CSP will not collude with any malicious
user. However, malicious users may collude to obtain additional information.
This assumption is reasonable, and has also been made known in previous
research, e.g., the proxy re-encryption system [4], where the semi-trusted
proxy server is assumed to not collude with other entities to ensure system-
wide security. Note that our security model does not assume that there is
no trust relationship between the CSP and the data owner. As in existing
work [29, 28], we assume that the CSP will correctly carry out our scheme
to ensure data security.

3.3. Design Goals

The main design goal is to achieve fine-grained access control and scalable
user revocation while protecting data security in cloud computing. Specifi-
cally, we categorize our goals into the following points:

• Scalability. The data owner can be offline in the process of user revo-
cations.

• Fine-grained access control. The data owner can specify expressive
access structure for each data.

9



• Data confidentiality. The CSP and malicious users cannot recover data
without the data owner’s permission.

• Cost efficiency. The re-encryption cost on the CSP is relatively low.

For scalability, we should enable each user’s access right to expire auto-
matically after a predetermined period of time; for fine-grained access control,
we should adopt an encryption system that supports attribute-based access
structure, such as CP-ABE and KP-ABE; for data confidentiality, we should
allow only the users whose attributes satisfy the access structure and whose
access rights are effective in the access time to recover the data; for cost
efficiency, we should apply lazy re-encryption (LRE) [11] to the TimePRE
scheme, so that the CSP can re-encrypt the data only when receiving data
access requests from users.

4. Technique Preliminaries

In this section, we will first introduce some basic definitions, and then
we will provide an overview of one proxy re-encryption (PRE) scheme and
hierarchical attribute-based encryption (HABE).

4.1. Definitions

The related definitions and complexity assumptions closely follow those
in Boneh et al [5].

Definition 1 (Bilinear Map): Let G1 and G2 be two cyclic groups of some
large prime order q, where G1 is an additive group and G2 is a multiplicative
group. A bilinear map, ê: G1 ×G1 → G2, satisfies the following properties:

1. Computable: There is a polynomial time algorithm to compute ê(P,Q) ∈
G2, for any P,Q ∈ G1.

2. Bilinear: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z∗
q.

3. Non-degenerate: The map does not send all pairs in G1 × G1 to the
identity in G2.

Definition 2 (BDH Parameter Generator): A randomized algorithm IG is
called a BDH parameter generator if IG takes a sufficiently large security
parameter K > 0 as input, runs in polynomial time in K, and outputs a
prime number q, the description of two groups G1 and G2 of order q, and the
description of a bilinear map ê : G1 ×G1 → G2.

10



Definition 3 (BDH Problem): Given a random element P ∈ G1, as well as
aP , bP , and cP , for some a, b, c ∈ Z∗

q, compute ê(P, P )abc ∈ G2.

Definition 4 (BDH Assumption): If IG is a BDH parameter generator, the
advantage AdvIG(B) that an algorithm B has in solving the BDH problem
is defined to be the probability that B outputs ê(P, P )abc on inputs q, G1,
G2, ê, P , aP , bP , cP , where < q,G1,G2, ê > are the outputs of IG for a
sufficiently large security parameter K, P is a random element ∈ G1, and a,
b, c are random elements of Z∗

q. The BDH assumption is that AdvIG(B) is
negligible for any efficient algorithm B.

4.2. Proxy Re-Encryption (PRE)

Let us illustrate the motivation of the PRE scheme [4] by the following
example: Alice receives emails encrypted under her public key PKA via a
semi-trusted mail server. When she leaves for vacation, she wants to delegate
her email to Bob whose public key is PKB, but does not want to share
her secret key SKA with him. The PRE scheme allows Alice to provide a
PRE key RKA→B to the mail server, with which the mail server can convert
a ciphertext that is encrypted under Alice’s public key PKA into another
ciphertext that can be decrypted by Bob’s secret key SKB, without seeing
the underlying plaintext, SKA, and SKB.

Let G be a multiplicative group of prime order q, and g be a random
generator of G. The PRE scheme is consisted of the following algorithms:

Key Generation: Alice can choose a random element a ∈ Z∗
q as her

secret key SKA, and her public key PKA is ga ∈ G. In the same way, Bob’s
public/secret key pair (SKB, PKB) are (b, g

b). The PRE key RKA→B = b/a(
mod q) is used to transfer a ciphertext that is encrypted under PKA to the
ciphertext that can be decrypted with SKB, and vise versa.

Encryption: To encrypt a message m ∈ G to Alice, the sender randomly
chooses r ∈ Z∗

q, and generates ciphertext CA = (CA1, CA2) = (grm, gar).

Decryption: Given the ciphertext CA = (CA1, CA2), Alice can recover
message m with her secret key a by calculating CA1/(CA2)

1/a.

Re-encryption: Given RKA→B, the mail server can convert CA to CB

that can be decrypted by Bob as follows: CB1 = CA1 and CB2 = (CA2)
RKA→B .

Given the ciphertext (CB1, CB2), Bob can recover message m with his secret
key b by calculating CB1/(CB2)

1/b.
Note that although the data is encrypted twice, first encrypted with Al-

ice’s public key, and then re-encrypted with a PRE key, Bob only needs to

11



execute decryption once to recover data. The PRE scheme is based on ElGa-
mal encryption [9], and thus the ciphertext is semantically secure, and given
the PRE key, the mail server cannot guess the secret keys a nor b. Please
refer to [4] for more details.

4.3. Hierarchical Attribute-Based Encryption (HABE)

Our TimePRE scheme is extended from an efficient CP-ABE system,
HABE [28, 26], which is constructed based on the bilinear map [5]. The access
structure in HABE is expressed as disjunctive normal form (DNF). The orig-
inal HABE allows a delegation mechanism in the generation of keys, as that
in hierarchical identity-based encryption (HIBE) [10]. Since our TimePRE
scheme focuses on automatic re-encryption, we provide a modified version of
HABE as follows:

Setup. This algorithm takes a security parameter K and the univer-
sal attribute UA as inputs, and outputs system public key PK and system
master key MK as follows:

PK = ({PKa}a∈UA, q,G1,G2, Q0, ê, P0, P1)
MK = ({ska}a∈UA,mk0,mk1, SK1)

where (q,G1,G2, ê) are the outputs of a BDH parameter generator IG, P0

is a random generator of G1, and P1 is a random element in G1; ska ∈ Z∗
q

is the secret key of attribute a and PKa = skaP0 ∈ G1 is the public key of
attribute a; mk0 and mk1 are random elements in Z∗

q, Q0 = mk0P0 ∈ G1,
and SK1 = mk0P1 ∈ G1.

Key Generation. This algorithm takes system public key PK, system
master key MK, user public key PKu and attribute a as inputs, and gen-
erates user identity secret key SKu and user attribute secret key SKu,a, as
follows:

SKu = mk1mkuP0 ∈ G1

SKu,a = SK1 +mk1mkuPKa ∈ G1

where mku = H1(PKu) ∈ Z∗
q and H1: G1 → Z∗

q is a hash function which can
be modeled as random oracle.

Encryption. This algorithm takes system public key PK, a DNF access

structure A =
N
∨
i=1

(CCi), and data F ∈ G2 as inputs to generate ciphertext

12



CA = (A, U0, U1, . . . , UN , V ) as follows:

A =
N
∨
i=1

(CCi) =
N
∨
i=1

(
ni∧
j=1

aij),

U0 = rP0,
{Ui = r

∑
a∈CCi

PKa}1≤i≤N ,

V = F · ê(Q0, rnAP1)

where N ∈ Z+ is the number of conjunctive clauses in A, ni ∈ Z+ is the
number of attributes in the i-th conjunctive clause CCi, and aij is the j-th
attribute in CCi; r is a random element in Z∗

q, and nA is the lowest common
multiple (LCM) of n1,. . . , nN .

Decryption. This algorithm takes system public key PK, user iden-
tity secret key, and user attribute secret keys on all attributes in the i-th
conjunctive clause CCi as inputs to recover data F as follows:

F = V/(

ê(U0,
nA
ni

∑
a∈CCi

SKu,a)

ê(SKu,
nA
ni
Ui)

)

To encrypt a data, we need to execute one bilinear map and O(N) number
of point multiplication operations to output a ciphertext of O(N) length,
where N is the number of conjunctive clauses in the access structure; To
recover a data, we only need to execute O(1) bilinear map operations. We
prove HABE to be semantically secure under the random oracle model and
the BDH assumption. More details can be found in [28, 26].

5. Outline of the TimePRE Scheme

In this section, we will first illustrate the main idea of the TimePRE
scheme, and then we will provide the formal definition of our scheme.

5.1. Main Idea

The main idea of the TimePRE scheme is to incorporate the concept
of time into the combination of HABE and PRE. Intuitively, each user is
identified by a set of attributes and a set of effective time periods that denotes
how long the user is eligible for these attributes, i.e., the period of validity of
the user’s access right. The data accessed by the users is associated with an
attribute-based access structure and an access time. The access structure is

13



Figure 2: Three-level time tree and attribute a’s PRE key tree.

specified by the data owner, but the access time is updated by the CSP with
the time of receiving an access request. The data can be recovered by only
the users whose attributes satisfies the access structure and whose access
rights are effective in the access time.

To enable the CSP to update the access time automatically, we first
express actual time as a time tree. The height of the time tree can be changed
as required. For ease of presentation, in this paper we only consider a three-
layer time tree as shown in Fig. 2-(a), where time is accurate to the day, and
the time tree is classified into three layers in order: year, month, and day.
We use (y,m, d), (y,m), and (y) to denote a particular day, month, and year,
respectively. For example, (2012, 4, 5) denotes April 5, 2012. The access time
associated with a data corresponds to a leaf node in the time tree, and the
effective time periods associated with a user correspond to a set of nodes in
the time tree. If there is a node corresponding to an effective time period
that is an ancestor of (or the same as) the node corresponding to the access
time, then the user’s access right is effective in the access time.

Then, we allow the data owner and the CSP to share a root secret key s
in advance, with which the CSP can calculate required PRE keys based on
its own time and re-encrypt corresponding ciphertext automatically. Specif-
ically, at any time, each attribute a is associated with one initial public key
PKa, and three time-based public keys: day-based public key PK

(y,m,d)
a ,

month-based public key PK
(y,m)
a , and year-based public key PK

(y)
a , each of

which denotes a’s public key in a particular day (y,m, d), month (y,m), and
year (y), respectively. For example, given current time (2012, 4, 5), attribute

14



a’s public keys include PKa, PK
(2012,4,5)
a , PK

(2012,4)
a , and PK

(2012)
a . In the

TimePRE scheme, the original ciphertexts are encrypted by the data owner
using the initial public keys of attributes in the data access structure. On
receiving a request, the CSP first uses the root secret key s to calculate PRE
keys on all attributes in the access structure based on its own time, and
then uses these PRE keys to re-encrypt the original ciphertext by updating
the initial public keys of all attributes in the access structure to time-based
public keys.

We use s
(y)
a , s

(y,m)
a , and s

(y,m,d)
a to denote the PRE keys on attribute a

in time (y), (y,m), and (y,m, d), which can be used to update attribute

a’s initial public key PKa to time-based public keys PK
(y)
a , PK

(y,m)
a , and

PK
(y,m,d)
a , respectively. Since the PRE key used in our scheme is derived from

a root secret key s and the current access time, we use different notations as
those in [4]. As shown in Fig. 2-(b), for each attribute a, the CSP can use the
root secret key s and the time tree to hierarchically calculate the time-based
PRE keys with Equation 1:

s(y)a = Hsa(y) (1a)

s(y,m)
a = H

s
(y)
a
(m) (1b)

s(y,m,d)
a = H

s
(y,m)
a

(d) (1c)

where sa = Hs(a), a, y,m, d ∈ {0, 1}∗ is a string corresponding to a specific
attribute, year, month, and day; and Hs, Hsa , Hs

(y)
a
, H

s
(y,m)
a

: {0, 1}∗ → Z∗
q are

hash functions with indexes s, sa, s
(y)
a , and s

(y,m)
a , respectively.

Furthermore, to incorporate the concept of time to HABE, each user
is granted with a set of time-based user attribute secret keys (UAK). Each
time-based UAK is associated with a user, an attribute, and an effective time
period. If user u is eligible for attribute a in day (y,m, d), the data owner first

uses the root secret key s to obtain day-based attribute public key PK
(y,m,d)
a

from initial attribute public key PKa, and then uses PK
(y,m,d)
a to generate a

day-based UAK SK
(y,m,d)
u,a for user u. The same situation holds for the case

that user u is eligible for attribute a in a month (y,m) or a year (y).
Return to the application in Section 1, Alice is authorized to possess at-

tributes Staff and CIS, and her effective time period is (2012), she will be
issued time-based UAK as shown in Table 1; Bob is authorized to possess
attributes Student and CIS, and his effective time periods are (2012, 5) and
(2012, 6), he will be issued time-based UAK as shown in Table 2. Given an

15



Table 1: Alice’s Time-Based User Attribute Secret Keys

Key Description

SK
(2012)
(Alice, Staff) UAK on attribute Staff effective in 2012

SK
(2012)
(Alice, CIS) UAK on attribute CIS effective in 2012

Table 2: Bob’s Time-Based User Attribute Secret Keys

Key Description

SK
(2012,5)
(Bob, Student) UAK on attribute Student effective in (2012, 5)

SK
(2012,6)
(Bob, Student) UAK on attribute Student effective in (2012, 6)

SK
(2012,5)
(Bob, CIS) UAK on attribute CIS effective in (2012, 5)

SK
(2012,6)
(Bob, CIS) UAK on attribute CIS effective in (2012, 6)

access time (2012, 7, 1) and data F with access structure A = {(Student ∧
CIS) ∨ Staff}, the CSP will use the root secret key s to calculate the PRE

keys in (2012), (2012, 7), and (2012, 7, 1) for all attributes in A, say {s(2012)Student},
{s(2012,7)Student}, {s(2012,7,1)Student }, {s(2012)CIS }, {s(2012,7)CIS },{s(2012,7,1)CIS }, {s(2012)Staff }, {s(2012,7)Staff },
{s(2012,7,1)Staff }. Then, it will use these PRE keys to re-encrypt original ciphertext
by updating initial public keys {PKStudent, PKCIS, PKStaff} to year-based

attribute public keys {PK
(2012)
Student, PK

(2012)
CIS , PK

(2012)
Staff }, month-based attribute

public keys {PK
(2012,7)
Student , PK

(2012,7)
CIS , PK

(2012,7)
Staff }, and day-based attribute pub-

lic keys {PK
(2012,7,1)
Student , PK

(2012,7,1)
CIS , PK

(2012,7,1)
Staff }. Given the re-encrypted ci-

phertext, only the users who possess {SK(2012)
u,Student, SK

(2012)
u,CIS } (or {SK(2012)

u,Staff},
or {SK(2012,7)

u,Student, SK
(2012,7)
u,CIS }, or {SK(2012,7)

u,Staff }, or {SK
(2012,7,1)
u,Student , SK

(2012,7,1)
u,CIS }, or

{SK(2012,7,1)
u,Staff }) can recover data F . Therefore, Alice, who possesses year-

based UAK {SK(2012)
Alice, Staff} can recover data F , but Bob, whose effective

time periods are overdue in (2012, 7, 1) cannot recover data F any more.
Remarks: (1) The CSP needs to keep the original ciphertexts for re-

encryption, but only returns the re-encrypted ciphertext to the users. In
Section 7, we will prove that given the original ciphertext, either the CSP
or the malicious users cannot know underlying data. (2) A user’s effective
time period “satisfies” the access time means that the user’s access right is
effective in the access time. The actual time is accurate to the day. Thus,
either effective time period (y,m, d), or (y,m), or (y) satisfies access time
(y,m, d). For example, given a day (2012, 4, 5), either year (2012), month

16



Table 3: Summary of Notations

Notation Description
K Security parameter
UA Universal attributes
PK System public key
MK System master key
s Root secret key
PKa Initial public key of attribute a
ska Initial secret key of attribute a
T A specific day (y,m, d), month (y,m), or year (y)
PKT

a Time-based public key of attribute a 2

A Data access structure
t Data access time3

Tu An effective time period with user u4

PKu User public key
SKu User identity secret key (UIK)
SKTu

u,a Time-based user attribute secret key (UAK) 5

⊆ Satisfying a condition

(2012, 12), and day (2012, 4, 5) satisfy the access time. (3) If in a day, a data
is accessed for multiple times, the CSP only needs to re-encrypt the data file
for the first time. The re-encrypted ciphertext can be used in the whole day.

5.2. Definition of the TimePRE scheme

First, we provide the summary of the most relevant notations used in our
scheme, as shown in Table 3, to serve as a quick reference. Then, we define
the TimePRE scheme by describing the following five algorithms:

1. Setup(K,UA) → (PK,MK, s) : The data owner takes a sufficiently
large security parameter K as input to generate the system public key

2If T is a particular day (y,m, d), PKT
a = PK

(y,m,d)
a ; If T is a particular month (y,m),

PKT
a = PK

(y,m)
a ; If T is a particular year (y), PKT

a = PK
(y)
a .

3Data access time is a particular day (y,m, d).
4An effective time period associated with user u, which may be a particular day

(y,m, d), month (y,m), or year (y).
5If Tu is a particular day (y,m, d), SKTu

u,a = SK
(y,m,d)
u,a ; If T is a particular month

(y,m), SKTu
u,a = SK

(y,m)
u,a ; If T is a particular year (y), SKTu

u,a = SK
(y)
u,a.

17



Figure 3: The working process of the TimePRE scheme.

PK, the system master keyMK, and the root secret key s. The system
public key will be published, the system master key will be kept secret,
and the root secret key will be sent to the CSP.

2. GenKey(PK,MK, s, PKu, a, Tu) → (SKu, SK
Tu
u,a) : Suppose that user

u with public key PKu is eligible for attribute a and his access right
is effective in time Tu. The data owner uses the system public key
PK, the system master key MK, the root secret key s, user public
key PKu, attribute a, and effective time period Tu to generates user
identity secret key (UIK) SKu and time-based user attribute secret key
(UAK) SKTu

u,a for u.

3. Encrypt(PK,A, F ) → (CA) : The data owner takes a DNF access
structure A, a data F , and system public key PK, e.g., initial public
keys of all attributes in the access structure {PKa}a∈A as inputs to
output a ciphertext CA.

4. ReEncrypt(CA, PK, s, t) → (Ct
A) : Given a ciphertext CA with struc-

ture A, the CSP first uses the system public key PK and the root secret
key s to generate PRE keys on all attributes in the access structure A
based on the access time t, and then uses these PRE keys to re-encrypt
the original ciphertext CA to Ct

A.

5. Decrypt(PK,Ct
A, SKu, {SKTu

u,a}a⊆A,Tu⊆t) → (F ) : User u, whose at-
tributes satisfy the access structure A, and whose effective time period
Tu satisfy the access time t, can use SKu and {SKTu

u,a}a⊆A to recover F
from Ct

A.

18



The working process of the TimePRE scheme is shown in Fig. 3. We will
provide a system-level description for the proposed scheme as follows:

1. System Setup. The data owner runs the Setup algorithm to generate
the system public key PK, the system master key MK, and the root secret
key s. It then sends PK and s along with its signatures on each component
of these messages to the CSP through a trusted and authenticated channel.

2. Data Creation. Before outsourcing a data to the cloud, the data
owner processes the data as follows: (1) Define a DNF attribute-based access
structure for the data. (2) Select a unique ID as the keyword of the data. (3)
Encode the data as that in [2], e.g, each data is divided into blocks of 1KB
size and can be queried using the selected keyword. (4) Encrypt each block
using the Encrypt algorithm. The CSP maintains a cloud user list (CUL),
which records all the authorized data owners. On receiving an encrypted
data, it first verifies if the sender is a valid user in CUL. If true, it duplicates
and distributes the ciphertext to cloud servers as that in [8].

3. User Grant. When a new user u with public key PKu joins the
system, the data owner, first assigns a set of attributes and a set of effective
time periods to the user, and runs the GenKey algorithm to generate a user
identity secret key (UIK) and a set of user attribute secret keys (UAKs).
Finally, the data owner sends the system public key PK and the generated
keys along with its signatures on each component of these messages to user u
over a trusted and authenticated channel. On receiving the ciphertext, user
u verifies the signatures. If correct, he accepts these secret keys. Using the
UIK, user u can log into the system.

5. Data Access. If user u wants to retrieve data F , he will first login
the system using his UIK, and then send a request to the CSP including
the keyword of data F . The CSP, on receiving the data access request, first
determines current time. Then, it runs the ReEncrypt algorithm to generate
PRE keys on all attributes in the access structure, and uses these PRE keys
to re-encrypt the ciphertext, i.e., updating the access time associated with
the ciphertext to the time it receives the data access request. Finally, it sends
the re-encrypted ciphertext to user u. If user u’s attributes satisfy the access
structure, and his access right is effective in the access time, he can run the
Decrypt algorithm to recover data.

19



6. Constructions

In this section, we will provide a detailed construction for the TimePRE
scheme as follows:

1. Setup(K,UA) → (PK,MK, s) : The data owner takes a security
parameter K and the universal attribute UA as inputs, and outputs the
system public key PK, the system master key MK, and a root secret key
s ∈ Z∗

q as follows:

PK = ({PKa}a∈UA, q,G1,G2, Q0, ê, P0, P1)
MK = ({ska}a∈UA,mk0,mk1, SK1)

where (q,G1,G2, ê) are the outputs of a BDH parameter generator [5] IG, P0

is a random generator of G1, P1 is a random element in G1; ska ∈ Z∗
q is the

initial secret key of attribute a and PKa = skaP0 ∈ G1 is the initial public key
of attribute a; mk0 and mk1 are random elements in Z∗

q, Q0 = mk0P0 ∈ G1,
and SK1 = mk0P1 ∈ G1. PK will be published, MK will be kept secret,
and s will be sent to the CSP.

2. GenKey(PK,MK, s, PKu, a, Tu) → (SKu, SK
Tu
u,a) : After authenti-

cating user u is eligible for attribute a and his access right is effective in
time period Tu, the data owner takes the system public key PK, the system
master key MK, user public key PKu, and the root secret key s as inputs,
and generates a UIK SKu and a time-based UAK SKTu

u,a, as follows:

SKu = mk1mkuP0

SKTu
u,a = SK1 +mk1mkuPKTu

a

where mku = H1(PKu) ∈ Z∗
q, H1 : G1 → Z∗

q is a hash function which can

be modeled as random oracle, and PK
Tu,a
a is the time-based public key of

attribute a in time Tu. Specifically, we have the following three cases: (1) Tu

is a particular day (y,m, d) and SK
(y,m,d)
u,a = SK1 + mk1mkuPK

(y,m,d)
a ; (2)

Tu is a particular month (y,m) and SK
(y,m)
u,a = SK1 +mk1mkuPK

(y,m)
a ; (3)

Tu is a particular year (y) and SK
(y)
u,a = SK1 +mk1mkuPK

(y)
a .

Here, time-based attribute public keys can be calculated with Equation 2:

PK(y)
a = PKa + s(y)a P0 (2a)

PK(y,m)
a = PKa + s(y,m)

a P0 (2b)

PK(y,m,d)
a = PKa + s(y,m,d)

a P0 (2c)

20



where PRE keys s
(y)
a , s

(y,m)
a , s

(y,m,d)
a can be calculated with Equation 1.

3. Encrypt(PK,A, F ) → (CA) : This algorithm is the same as the En-
cryption algorithm in HABE. The data owner encrypts data F ∈ G2 with

access structure A =
N
∨
i=1

(CCi) =
N
∨
i=1

(
ni∧
j=1

aij) as follows: It first picks a random

element r ∈ Z∗
q, and then sets nA to be the lowest common multiple (LCM)

of n1,. . . , nN . Finally, it calculates Equation 3 to produce the ciphertext:

U0 = rP0, (3a)

{Ui = r
∑

a∈CCi

PKa}1≤i≤N , (3b)

V = F · ê(Q0, rnAP1) (3c)

The original ciphertext is set to CA = (A, U0, {Ui}1≤i≤N , V ).

4. ReEncrypt(CA, s, t) → (Ct
A) : On receiving a user’s request for data

F , the CSP first determines current time, say t = (y,m, d). Then, it uses
the root secret key s and access time t to re-encrypt the original ciphertext
CA with Equation 4:

U t
0 = U0 + r′P0, (4a)

U t
(y)i =

∑
a∈CCi

(Ui + r′PKa + s(y)a U t
0), (4b)

U t
(y,m)i =

∑
a∈CCi

(Ui + r′PKa + s(y,m)
a U t

0), (4c)

U t
(y,m,d)i =

∑
a∈CCi

(Ui + r′PKa + s(y,m,d)
a U t

0), (4d)

V t = V · ê(Q0, r
′nAP1) (4e)

where r′ is randomly chosen from Z∗
q and the PRE keys sya, s

(y,m)
a , s

(y,m,d)
a can

be calculated with Equation 1. The ciphertext that is re-encrypted in time t
is set to Ct

A = (A, t, U t
0, {U t

(y)i}1≤i≤N , {U t
(y,m)i}1≤i≤N , {U t

(y,m,d)i}1≤i≤N , V
t).

5. Decrypt(PK,Ct
A, SKu, {SKTu

u,a}a⊆A,Tu⊆t) → (F ) : Given ciphertext Ct
A,

user u, whose attributes satisfy the i-th conjunctive clause CCi and whose
effective time period Tu satisfies the access time t, uses his UIK SKu and
UAKs {SKTu

u,a}a⊆A,Tu⊆t to recover data F with Equation 5:

F = V t/

ê(U t
0,

nA
ni

∑
a∈CCi

SKTu
u,a)

ê(SKu,
nA
ni
U t
Tui

)
(5)

21



Specifically, there are three cases:
(1) Tu is a particular day (y,m, d) and Equation 5 is equivalent to:

F = V t/

ê(U t
0,

nA
ni

∑
a∈CCi

SK(y,m,d)
u,a )

ê(SKu,
nA
ni
U t
(y,m,d)i)

(2) Tu is a particular month (y,m) and Equation 5 is equivalent to:

F = V t/

ê(U t
0,

nA
ni

∑
a∈CCi

SK(y,m)
u,a )

ê(SKu,
nA
ni
U t
(y,m)i)

(3) Tu is a particular year (y) and Equation 5 is equivalent to:

F = V t/

ê(U t
0,

nA
ni

∑
a∈CCi

SK(y)
u,a)

ê(SKu,
nA
ni
U t
(y)i)

The key technique of the TimePRE scheme is that the root secret key s is
simultaneously used by the data owner to generate time-based UAKs, and by
the CSP to generate PRE keys. Note that each time-based UAK is generated
with time-based attribute public key, which is in turn generated by s and
an effective time period Tu; each data is first encrypted with initial attribute
public keys, and will be updated by the CSP to day-based attribute public
keys, which are in turn generated by s and the access time of receiving a
request t. Therefore, even if s is only shared between the data owner and the
CSP, the users still can decrypt the ciphertext when their attributes satisfy
the access structure and their access rights are effective in the access time.
Furthermore, the GenKey algorithm should take the system master key MK
as inputs, which is kept secret by the data owner. Thus, given the root secret
key that has nothing to do with the system master key, the CSP cannot know
any information about the UAKs.

7. Analysis

In this section, we will first provide a correctness analysis for the TimePRE
scheme, and then we will analyze the performance of the TimePRE scheme.
Finally, we will provide an intuitive security proof for our scheme.

22



7.1. Correctness Analysis

To prove the correctness of the TimePRE scheme, we should prove that
given a re-encrypted ciphertext, the users, whose attributes satisfy the ac-
cess structure and whose access rights are effective in the access time, can
successfully recover the data.

This is equivalent to proving that Equation 5 in the Decrypt algorithm
can successfully recover F . Note that the ciphertext produced by Equation 4
in the ReEncrypt algorithm can further evolve into the following form:

U t
0 = U0 + r

′
P0 = (r + r

′
)P0,

U t
(y)i =

∑
a∈CCi

(Ui + r
′
PKa + s(y)U t

0) =
∑

a∈CCi
((r + r′)PK

(y)
a ),

U t
(y,m)i =

∑
a∈CCi

(Ui + r
′
PKa + s(y,m)U t

0) =
∑

a∈CCi
((r + r′)PK

(y,m)
a ),

U t
(y,m,d)i =

∑
a∈CCi

(Ui + r
′
PKa + s(y,m,d)U t

0) =
∑

a∈CCi
((r + r′)PK

(y,m,d)
a ),

V t = V · ê(Q0, r
′
nAP1) = ê(Q0, (r + r′)nAP1)

Suppose user u’s effective time period that satisfies the access time t is
a particular day. That is Tu = (y,m, d). We can prove that case (1) of
Equation 5 is correct as follows:

V t/

ê(U t
0,

nA
ni

∑
a∈CCi

SK
(y,m,d)
u,a )

ê(SKu,
nA
ni
U t
(y,m,d)i)

= V t/

ê((r + r′)P0,
nA
ni

∑
a∈CCi

(SK1 +mk1mkuPK
(y,m,d)
a ))

ê(mk1mkuP0,
nA
ni
(r + r′)PK

(y,m,d)
a )

= V t/

ê((r + r′)P0, nASK1)ê((r + r′)P0,
nA
ni
mk1mku

∑
a∈CCi

PK
(y,m,d)
a )

ê(mk1mkuP0,
nA
ni
(r + r′)

∑
a∈CCi

PK
(y,m,d)
a )

= V t/

ê((r + r′)P0, nASK1)ê(mk1mkuP0,
nA
ni
(r + r′)

∑
a∈CCi

PK
(y,m,d)
a )

ê(mk1mkuP0,
nA
ni
(r + r′)

∑
a∈CCi

PK
(y,m,d)
a )

= V t/ê((r + r′)P0, nASK1)

= F · ê(Q0, (r + r′)nAP1)/ê(Q0, (r + r′)nAP1)

= F

23



Table 4: Comparisons of CP-ABE Schemes

Properties Reference [3] Reference [19] Our Scheme
User Key Size O(2n) O(n) O(nm)
Ciphertext O(2S) O(3N) O(N)
Encryption (exp) O(2N) O(3N) O(N)
Decryption (map) O(2P ) O(1) O(1)

In the same way, when Tu = (y,m), we can prove that cases (2) of Equation 5
is correct; when Tu = (y), we can prove that cases (3) of Equation 5 is correct.
Therefore, the TimePRE scheme is correct.

7.2. Performance Analysis

The efficiency of the Setup algorithms is rather straightforward. There-
fore, we only analyze the costs introduced by algorithms GenKey, Encrypt,
ReEncrypt, and Decrypt. If a user is identified by n attributes and his ef-
fective time periods correspond to m nodes in the time tree, the GenKey
algorithm requires the data owner to execute O(mn) point multiplications
to generate secret keys of O(mn) length. However, if we deliberately design
the time tree, m can be limited to a relatively small value.

To encrypt data F under a DNF access control structure A =
N
∨
i=1

(CCi),

a user needs to compute one bilinear map of Q0 and P1, and O(N) number
of exponentiation operations to output a ciphertext of O(N) length. Notice
that the computation for the bilinear map of Q0 and P1 is independent of the
message to be encrypted, and hence can be done once for all. To recover F ,
a user, whose attributes satisfy the access structure and whose access right is
effective in the access time, needs to execute O(1) bilinear map operations.

In Table 4, we briefly compare our scheme with other CP-ABE schemes [3,
19]. We believe that the most expensive computation is bilinear map, abbre-
viated as map; the next is the exponentiation, abbreviated as exp. In Table
4, n is the number of attributes associated with a user, m is the number of
nodes in the time tree corresponding to a user’s effective time periods, S is
the number of attributes in an access structure, N is the number of conjunc-
tive clauses in an access structure, and P is the number of attributes in an
access structure that is matched by attributes in a user’s secret key.

Then, we briefly compare our scheme with the work in references [29, 28],
which also allow the CSP to be delegated to execute re-encryption. We first

24



Table 5: Comparisons of Re-encryption Cost on Data Owner

Properties Reference [29] Reference [28] Our Scheme
Number of PRE keys O(n) O(n) 0
Number of update keys O(nw) O(nw) 0

Table 6: Comparisons of Re-encryption Cost on CSP

Properties Reference [29] Reference [28] Our Scheme
Exp O(n) O(n) O(6N)
Map O(0) O(0) O(1)

consider the workload on the data owner in the user revocation, as shown
in Table 5, where n is the number of attributes associated with a user and
w is the number of remaining authorized users. In the TimePRE scheme,
the data owner has nothing to do when a user is revoked. The ReEncrypt
algorithm run by the CSP is without any involvement of the data owner.

Then, we compare the re-encryption costs incurred at the CSP, as shown
in Table 6, where n is the number of attributes associated with a revoked
user and N is the number of conjunctive clauses in an access structure.
To re-encrypt a ciphertext CA based on the access time t = (y,m, d), our
scheme requires the CSP to execute O(6N) exponentiation operations and
one bilinear map operation to re-encrypt a ciphertext. Since the CSP can
batch the re-encryption operations and re-encrypt data only when receiving
a data access request, the re-encryption cost is relatively low.

7.3. Security Analysis

The Encrypt algorithm in the TimePRE scheme is the same as the En-
cryption algorithm in HABE, which has been proven to be semantically se-
cure in [28]. Therefore, we consider that the TimePRE scheme is secure if
the following propositions hold:

• Proposition 1. The keys produced by the GenKey algorithm are
secure.

• Proposition 2. The ciphertext produced by the ReEncrypt algorithm
is semantically secure.

• Proposition 3. Given the root secret key and the original ciphertext,
the CSP cannot know neither the underlying data, nor UAKs while

25



executing re-encryption.

For Proposition 1, we prove that the GenKey algorithm is as secure as
the Key Generation algorithm in HABE. First, the way to generate UIK is
the same in both algorithms. Then, given the system public key PK, the
system master key MK, user public key PKu, and attribute a, if the data
owner takes the time-based attribute public key PK

(Tu)
a as inputs of the Key

Generation algorithm in HABE, then the produced UAK is the same as that
of the GenKey algorithm that takes time Tu, the initial attribute public key
PKa, and the root secret key s as inputs. As proven in [28], due to the
BDH assumption, the malicious users cannot obtain MK, even if all of them
collude. Therefore, Proposition 1 is correct.

For Proposition 2, we prove that the ReEncrypt algorithm is as secure as
the Encryption algorithm in HABE. Given system public key PK and data
F with access structure A, if the data owner takes the time-based attribute
public keys {PK

(y)
a }a∈A, {PK

(y,m)
a }a∈A, {PK

(y,m,d)
a }a∈A, and a random num-

ber r′′ = r + r′ as inputs of the Encryption algorithm in HABE, then the
produced ciphertext is the same as that of the the ReEncrypt algorithm that
takes time t = (y,m, d), the original ciphertext CA, and root secret key s as
inputs. Therefore, Proposition 2 is correct.

For completeness, we provide an intuitive security proof for the ReEncrypt
algorithm as follows:

Recall that data F is re-encrypted to V t = F · ê(Q0, (r + r′)nAP1) in
time t = (y,m, d). Therefore, an adversary A needs to construct ê(Q0, (r +
r′)nAP1) = ê(U t

0, SK1)
nA to recover F . From the GenKey algorithm, we

know that the only occurrence of SK1 is in the UAKs. In our security
model, we assume that the CSP will not collude with the malicious users,
who possess UAKs. Therefore, we only consider the case that malicious users
work independently, or collude to compromise data security.

We consider that the TimePRE scheme is insecure if one of the following
cases happens: (1) Adversary A, whose effective time period satisfies the
access time, but whose attributes do not satisfy the access control, can recover
data F . (2) Adversary A, whose attributes satisfy the access control, but
whose effective time does not satisfy the access time, can recover data F .

For case (1), we have the following assumptions for ease of presenta-
tion: Adversary A has requested UAKs on all but one of the attributes
ai1, . . . , ai(k−1), ai(k+1), . . . , aini

in CCi for user u, and has requested a UAK
on the missing attribute aik for user u

′
. Both users’ effective time periods

26



Tu and Tu′ satisfy the access time t = (y,m, d). Based on Proposition 1, we
know that the adversary cannot generate fake keys. The only occurrence of
SK1 is in the UAKs, so the adversary has to use UAKs requested for user u
and u

′
for bilinear map, yielding for some α:

ê(U t
0,

nA
ni

ni∑
j=1,j ̸=k

SKTu
u,aij

+ nA
ni
SK

Tu′

u
′
,aik

+ α)

= ê(U t
0, SK1)

nA ê(r′′P0, α)ê(SKu′ , r′′PK
Tu′
aik )

nA
ni ê(SKu, r

′′
ni∑

j=1,j ̸=k

PKTu
aij
)
nA
ni

where r′′ = r + r′. To obtain ê(U0, SK1)
nA , the last three elements have to

be eliminated. Note that SKu′ and SKu are known to adversary A, but
r is randomly chosen by the data owner for the original ciphertext CA and
r′ is randomly chosen by the CSP for the re-encrypted ciphertext Ct

A. The

adversary cannot know r′′PK
Tu′
aik or r′′

ni∑
j=1,j ̸=k

PKTu
aij
, even if he knows U t

(Tu)i

and U t
(Tu′ )i

due to the BDH assumption. Therefore, adversary A cannot

recover the data from V t.
For case (2), we have the following assumptions for ease of presenta-

tion: Adversary A has requested UAKs on all attributes in CCi for user u.
Any effective time period Tu of this user does not satisfy the access time
t = (y,m, d). Based on Proposition 1, we know that the adversary cannot
generate fake keys. The only occurrence of SK1 is in the UAKs, so the ad-
versary has to use UAKs requested for user u for bilinear map, yielding for
some α:

ê(U t
0,

nA
ni

ni∑
j=1

SKTu
u,aij

+ α)

= ê(U t
0, SK1)

nA ê(r′′P0, α)ê(SKu, r
′′

ni∑
j=1

PKTu
aij
)
nA
ni

where r′′ = r + r′. To obtain ê(U0, SK1)
nA , the last two elements have to be

eliminated. Note that the SKu is known to adversary A, but r is randomly
chosen by the data owner for the original ciphertext CA and r′ is randomly
chosen by the CSP for the re-encrypted ciphertext Ct

A. The adversary cannot

know r′′
ni∑

j=1,j ̸=k

P Tu
aij
, even if he knows U t

i and UTu
i due to the BDH assumption.

Therefore, adversary A cannot recover data from V t.
For Proposition 3, we first prove that the CSP cannot derive the system

master key MK and UAKs from the root secret key s. As compared to

27



HABE, the TimePRE scheme discloses an additional root secret key to the
CSP, which is randomly chosen by the data owner and has nothing to do
with the system master key. Therefore, the CSP cannot derive the system
master key from the root secret key. Based on Proposition 1, the CSP cannot
obtain UAKs without the system master key.

Then, we prove that the CSP cannot compromise data security given the
original ciphertext. Note that the original ciphertext is encrypted with the
Encrypt algorithm, which is semantically secure. Therefore, the ciphertext
can be decrypted by only the entity who possesses UAKs on the initial at-
tribute public keys. In the TimePRE scheme, a users’ UAKs are generated
on the time-based attribute public key, rather than the initial attribute pub-
lic key. Therefore, only the data owner with the initial attribute secret keys
can recover the data from the original ciphertext. Neither the users, nor the
CSP can decrypt the original ciphertext.

8. Discussion

8.1. Different Length of Effective Time

The design goal of this paper is to achieve scalable user revocation. Thus,
in the TimePRE scheme, the effective time periods of all attributes associated
with a user are the same. Some applications may require that different
attributes are associated with different effective time periods. Our scheme
cannot be directly applied to such an environment.

To illustrate, let us assume that data F is associated with access structure

A =
N
∨
i=1

(CCi) =
N
∨
i=1

(
ni∧
j=1

aij) and a user u possesses all attributes in CCi, where

the effective time period of ai1, . . . , ai(k−1), ai(k+1), . . . , aini
is (y,m, d) and the

effective time period of aik is (y). Actually, user u has rights to access data F
in time (y,m, d). But with the TimePRE scheme, he cannot recover the data,
since he does not have sufficient day-based UAKs, nor year-based UAKs on
attributes in CCi.

We provide a possible improvement for the TimePRE scheme, which re-
quires the data owner to generate additional UAKs for each user in the
GenKey algorithm. The basic idea is that if user u is eligible for attribute a1
in time Tu,a1 , and for attribute a2 in time Tu,a2 , where the node in the time
tree corresponding to Tu,a1 is an ancestor of that corresponds to Tu,a2 , then

the data owner should generate SK
Tu,a2
u,a1 in addition to SK

Tu,a1
u,a1 and SK

Tu,a2
u,a2

28



Figure 4: The solid nodes in the time tree correspond to the effective time periods asso-
ciated with a user’s UAKs.

for user u. Specifically, the data owner will first generate UAKs with dif-
ferent effective time periods to user u. Then, from bottom to top, for each
non-leaf node that corresponds to an effective time period associated with
an attribute a, if there are descent nodes that correspond to effective time
periods associated with other attributes, then the data owner will generates
UAKs on attribute a with effective time periods corresponding to the de-
scent nodes for user u. For example, as shown in Fig. 4, the data owner
first generates SK

(y,m,d)
u,a1 , SK

(y,m,d)
u,a2 , SK

(y,m)
u,a3 , SK

(y)
u,a4 , and SK

(y)
u,a5 for user u.

Then, for SK
(y,m)
u,a3 , the data owner also generates SK

(y,m,d)
u,a3 , since the user is

eligible for attributes a1, a2 in the time (y,m, d), which corresponds a descent

node of (y,m) in the time tree. In the same way, for SK
(y)
u,a4 , the data owner

generates SK
(y,m)
u,a4 and SK

(y,m,d)
u,a4 ; and for SK

(y)
u,a5 , the data owner generates

SK
(y,m)
u,a5 and SK

(y,m,d)
u,a5 .

This solution ensures that a user, whose attributes satisfy the access
structure and whose attributes are effective in the access time, has sufficient
day-based, month-based, or year-based UAKs to decrypt the ciphertext. The
main problem is that each user should maintain additional UAKs. Specifi-
cally, if a user initially possesses α year-based UAKs, β month-based UAKs,
and γ day-based UAKs, then in the worst case, he will be issued 3γ+2β+α
UAKs in total. However, the total number of UAKs can be limited to a
relatively small value by deliberately designing the time tree.

8.2. No Global Time

In the system model, we assume that there is a global time among all
entities. Actually, this assumption is hard to achieve in a cloud environment,
where the cloud servers may be located all over the world. The solution

29



proposed in our previous work [17] may be applied to this paper.
Intuitively, we divide time {t1, . . . , tl} into time slices of equal length,

denoted as TSi = [ti, ti+1), where 1 ≤ i ≤ l. Furthermore, we determine
a maximal time difference ∆ between the data owner and the cloud server,
where ∆ is no larger than the duration of one time slice. In other words,
when the data owner is at TSi, the cloud server’s time may be TSi−1, TSi, or
TSi+1. On receiving a data access request, a cloud server should re-encrypt
the ciphertext with the its current time slice. However, the cloud server will
not respond immediately.

We require the data owner and each cloud server to agree on a maximal
waiting time α. Each read or write command should be associated with a
time slice. In Ti, if the cloud server receives either a read or a write command
tagged with TSi, it will hold on until ti+1 + α. If the time slice associated
with the command is larger than the cloud server’s time slice, the cloud
server will keep this command in a queue. Otherwise, it will simply discard
the command. The scheme in [17] ensures that the data that is updated
in Ti can be accessed by only the users whose attributes satisfy the access
structure and whose access rights are effective in Ti+1. The main drawback of
this scheme is that the number of keys issued to each user will grow linearly
as the number of effective time slices associated with the user’s access right.

8.3. Limitations of the TimePRE Scheme

The TimePRE scheme is more suitable to applications where the period
of validity of each user’s access right is predetermined and a coarse-grained
time accuracy is satisfactory. If a data owner wants to revoke a user from the
system at any time, then the schemes proposed in [29, 28] are better choices.
For the applications that requires a fine-grained time accuracy, e.g., a second
or microsecond, the cost to ensure correctness will be excessive even if we
apply the techniques in [17] to the TimePRE scheme.

Finally, our security model assumes that the CSP will not collude with
malicious users. The CSP is responsible for re-encryption, i.e., updating the
access time associated with a data to the time of receiving a data access
request. If the CSP colludes with the malicious users, it may always update
the access time to a fake time, so that the revoked users can recover data
using their overdue keys. Therefore, the user revocation mechanism loses
effectiveness. However, the CSP cannot generate fake UAKs for the mali-
cious users. Thus, malicious users, whose attributes do not satisfy the access
structure, cannot recover the data, even if they collude with the CSP.

30



9. Conclusion

In this paper, we proposed the TimePRE scheme to achieve fine-grained
access control and scalable user revocation in a cloud environment. Our
scheme enables each user’s access right to be effective in a pre-determined
period of time, and enable the CSP to re-encrypt ciphertexts automatically,
based on its own time. Thus, the data owner can be offline in the process of
user revocations.

The main problem with our scheme is that it requires the effective time
periods to be the same for all attributes associated with a user. Although we
provide a possible improvement, the users will be issued more UAKs. Our
future work is to allow different effective time periods for different attributes
associated with a user, without increasing the number of UAKs associated
with each user.

Acknowledgments

This work is supported by the National Natural Science Foundation of
China under Grant Nos. 61073037 & 61272151, and Hunan Provincial Sci-
ence and Technology Program under Grant Nos. 2010GK2003 & 2010GK3005.

References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010.

[2] K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu. Efficient shar-
ing of encrypted data. In Proceedings of the Australian Conference on
Information Security and Privacy (ACISP), pages 107–120, 2002.

[3] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-
based encryption. In Proceedings of IEEE Symposium on Security and
Privacy (SP), pages 321–334, 2007.

[4] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic
proxy cryptography. In Proceedings of International Conference on the
Theory and Application of Cryptographic Techniques (EUROCRYPT),
pages 127–144, 1998.

31



[5] D. Boneh and M. Franklin. Identity-based encryption from the weil pair-
ing. In Proceedings of International Cryptology Conference (CRYPTO),
pages 213–229, 2001.

[6] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina. Controlling data in the cloud: outsourcing computation
without outsourcing control. In Proceedings of the ACM Workshop on
Cloud Computing Security (CCS), pages 85–90, 2009.

[7] C. ComPUtING. Cloud computing privacy concerns on our doorstep.
Communications of the ACM, 54(1):36–38, 2011.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. In Proceedings of the ACM
SIGOPS Symposium on Operating Systems Principles (SOSP), pages
205–220, 2007.

[9] T. ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Proceedings of International Cryptology Con-
ference (CRYPTO), pages 10–18, 1984.

[10] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In
Proceedings of the International Conference on the Theory and Appli-
cation of Cryptology and Information Security (ASIACRYPT), pages
149–155, 2002.

[11] E.J. Goh, H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing
remote untrusted storage. In Proceedings of Network and Distributed
Systems Security Symposium (NDSS), pages 131–145, 2003.

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Proceed-
ings of the ACM Conference on Computer and Communications Security
(CCS), pages 89–98, 2006.

[13] M. Green and G. Ateniese. Identity-based proxy re-encryption. In Pro-
ceedings of the International Conference on Applied Cryptography and
Network Security (ACNS), pages 288–306, 2007.

32



[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus:
Scalable secure file sharing on untrusted storage. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST), pages
29–42, 2003.

[15] S. Kamara and K. Lauter. Cryptographic cloud storage. In Proceedings
of the International Conference on Financial Cryptograpy and Data Se-
curity (FC), pages 136–149, 2010.

[16] J. Li, Q. Huang, X. Chen, S.S.M. Chow, D.S. Wong, and D. Xie. Multi-
authority ciphertext-policy attribute-based encryption with accountabil-
ity. In Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS), pages 386–390, 2011.

[17] Q. Liu, C.C. Tan, J. Wu, and G. Wang. Reliable re-encryption in un-
reliable clouds. In Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM), 2011.

[18] Q. Liu, C.C. Tan, J. Wu, and G. Wang. Efficient information retrieval
for ranked queries in cost-effective cloud environments. In Proceedings
of the IEEE International Conference on Computer Communications
(INFOCOM), 2012.

[19] S. Müller, S. Katzenbeisser, and C. Eckert. Distributed attribute-based
encryption. In Proceedings of Annual International Conference on In-
formation Security and Cryptology (ICISC), pages 20–36, 2009.

[20] S. Narayan, M. Gagne, and R. Safavi-Naini. Privacy preserving EHR
system using attribute-based infrastructure. In Proceedings of the ACM
workshop on Cloud Computing Security (CCS), pages 47–52, 2010.

[21] B. Patel and J. Crowcroft. Ticket based service access for the mobile
user. In Proceedings of the ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom), pages 223–233, 1997.

[22] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-
based systems. Journal of Computer Security, 18(5):799–837, 2010.

[23] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Proceedings
of International Conference on the Theory and Application of Crypto-
graphic Techniques (EUROCRYPT), pages 557–557, 2005.

33



[24] B. Stone and A. Vance. Companies slowly join cloudcomputing. New
York Times, 18:2010, 2010.

[25] S. Subashini and V. Kavitha. A survey on security issues in service
delivery models of cloud computing. Journal of Network and Computer
Applications, 34(1):1–11, 2011.

[26] G. Wang, Q. Liu, and J. Wu. Hierarchical attribute-based encryption for
fine-grained access control in cloud storage services. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
pages 735–737, 2010.

[27] G. Wang, Q. Liu, and J. Wu. Achieving fine-grained access control for
secure data sharing on cloud servers. Concurrency and Computation:
Practice and Experience, 23(12):1443–1464, 2011.

[28] G. Wang, Q. Liu, J. Wu, and M. Guo. Hierarchical attribute-based
encryption and scalable user revocation for sharing data in cloud servers.
Computers & Security, 30(5):320–331, 2011.

[29] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and
fine-grained data access control in cloud computing. In Proceedings of
the IEEE International Conference on Computer Communications (IN-
FOCOM), pages 534–542, 2010.

[30] S. Yu, C. Wang, K. Ren, and W. Lou. Attribute based data shar-
ing with attribute revocation. In Proceedings of the ACM Symposium
on Information, Computer and Communications Security (ASIACCS),
pages 261–270, 2010.

34


